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N U M E R I C A L  S O L U T I O N  O F  S T E F A N  P R O B L E M S  BY 

T H E  M E T H O D  O F  G R E E N  F U N C T I O N S  

Yu. V. Zhernovyi and M. T. Saichuk UDC 536.25:517.95 

A method for reducing a multidimensional Stefan problem to a system of Hammerstein integral equations 

is proposed. Application of the proposed method to numerical solution of one-dimensional nonstationary 

Stefan problems formulated for the cases of an internal phase front, coincidence of the phase front with the 

external boundary, and a movable external boundary is considered. The efficiency of the method is tested 

on an exactly solvable Stefan problem. 

It is well known that the majority of numerical methods of solving heat-conduction equations with a phase 

transition (Stefan problems) can be divided into two groups: direct-computation schemes [1, 21 and schemes based 

on explicit isolation of the front [3-6 ]. Efficient difference algorithms for direct computation are especially widely 

applied to multidimensional problems. However, the accuracy of computing both the temperature and the position 

of the phase interface depend strongly on the smoothing parameter, whose evaluation is rather complicated. In 

implementing difference schemes based on explicit isolation of the front, considerable difficulties arise due to their 

complex character and insufficient efficiency resulting from the need to adjust the grid in each time step. At the 

same time, the possibilities of application of analytical methods at the initial stage of the investigation of problems 

of this type have by no means been exhausted, in particular, use of the method of Green functions (here, the Green 

function of the corresponding linear problem for the Laplace operator is meant) to reduce Stefan problems to integral 

equations. The advantage of this approach as compared to finite-difference methods consists in that, first, no 

approximation of the sought solution over spatial variables is necessary and, second, more efficient projection-grid 

methods [7 ] can be used to solve the integral equations obtained. The efficiency of computations can also be 

improved by using a stable computational grid that does not need to be adjusted in each time step. 

In what follows, we consider a general formulation of the Stefan problem with account for the temperature 

dependence of the coefficients of the heat-conduction equation (intrinsic nonlinearity) under nonlinear boundary 

conditions (extrinsic nonlinearity). Application of the Kirchhoff transform linearizes the elliptic part of the 

nonlinear heat-conduction equation. This, however, even in the simplest case of linear boundary conditions of the 

third kind (describing heat transfer obeying Newton's law), transforms them into nonlinear ones. Subsequent use 

of the method of Green functions [8, 91 becomes impossible (excluding the case of boundary conditions of the first 

kind), since the corresponding Green function cannot exist as a Green function for the second internal boundary- 

value problem for the Laplace operator [81. We propose a method for reducing the Kirchhoff-transformed Stefan 

problem to integral equations (in the case of a nonstationary problem the method of lines is first applied). 

To explain the essence of the method proposed, let us consider a multidimensional stationary Stefan prob- 

lem. The method is applicable to an arbitrary number of phases; however, to simplify considerations, we restrict 

ourselves to the two-phase problem. Let the body being heated occupy a domain ~2 bounded by a closed piecewise- 
smooth surface S. The phase-transition surface F, whose position is unknown, divides the domain f2 into the two 

subdomains f2 s = {P G if2: T(P) < T.} and f2 L = {P E f2: T(P) > T.} occupied by the solid and liquid phases of 

the substance, respectively. In each of the domains f2 s and f2 L the temperature T(P) at the point P satisfies the 

stationary heat conduction equation: 

div(2 s (T (P)) grad T (P)) = 0 ,  P E  if2 s, div (.lt. (T (P)) grad T (P)) = 0 ,  P E Q L ,  
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where )~s(T) and ).I.(T) arc given continuously differenliable functions. A nonlinear  boundary condition de termined  

by the regularities of the heal t ransfer  is specified on the surface S: 

(T(P))  OT(P) = q(P,  T(P))  PE S ,t(T) = I 2s (T) '  T < T , ,  
On " ' 1 2 l " ( T ) '  T>_ T . ,  

where OT/dn  is the derivative along the external  normal to S. On the sought phase interface F, in addit ion to the 

fact that the temperature T(P) equals the temperature of the ph~ise transition T(P)  = T . ,  P E F, the s ta t ionary 

Stefan condition is satisfied: 

]  r_L_ l (l) 
2 s (T (P)) ~ = ~'L (T (P)) On I e c a  L On pE~s 

P--, F P--. F 

By applying the Kirchhoff transform 

T(P) 
u (P) = u (T) = f A (T) d T ,  T O < min T ( P )  

T O PE~ 

(the inverse transform exists, for example, when the dependences 2s(T) and 2L(T) are linear) and  taking into 

account the condition of equality of heat fluxes (1), owing to which the function u(P)  is continuously differentiable 

even in passing through the surface F, we reduce the original problem to a nonlinear  boundary-value  problem for 

the Laplace equation: 

A u ( P )  = 0 ,  P E  if2, Ou (P) = f (p,  u (P)) P E S (2) 
On 

(here f ( P ,  u (P))  = q(P,  T ( u ( P ) ) ) )  and an additional condition for determinat ion of the surface F: 

u ( P ) = u . ,  P E F .  (3) 

If one tries to reduce problem (2) to an integral equation using the method of Green functions, the following 

boundary-value problem is obtained for determination of the Green function G(P,  Q): 

A G ( P , Q )  = - 6 ( P , Q ) ,  P E  Q ,  
OG (p  

On 

(here 6(P,  Q) is Dirac's 6-functi6n with a singularity at the point Q E ~ ) ,  which has no solution [8 I. 

However, the problem arising can be solved by constructing a Green  function that we will refer  to as 

auxiliary. Let S = St US2, where $I is a smooth surface and $2 is a smooth or piecewise smooth surface. Let us 

write the boundary condition of problem (2) in the form 

Ou 
(P) + hu (P) = f (P, u (P)) + hu (P) , P E S 1 , 

On 

Ou 
(P) = f ( P , u ( P ) ) ,  P E S  2. 

On 

where h is an arbi t rary  positive number (0 < h < oo). Now we can introduce an auxiliary Green  function as the 

solution of the following boundary-value problem: 

AG (P, Q) = - 6 (P, Q) ,  P E if2 OG ( P ,  Q)  + h G  = 0 P E S t , O G ( P , Q )  = 0  P E S 2 .  (4) 
' i)n ' On ' 

This function exists and is unique 18 1, and the possibility of determining it in practice depends on the shape of 

the surface S. It should bc noted that the boundary condition of the third kind with the auxil iary parameter  h 

introduced can be considered on the entire surface S, not just on its smooth portion St. 
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If the Green  function is found from (4), then with its help, by using the second Green  formula  for the 

Laplace operator  applied to the functions u and G, one can reduce boundary-va lue  problem (2) to the integral  

relationship 

u (P) = f G (P, Q) [f (Q, u (Q)) + hu (Q) I dSQ + f G (P, Q) f (Q, u (Q)) dSQ , P E Q . 
S 1 S 2 

(5) 

rt 

By considering this relat ionship on each of the smooth surfaces Sl and  S2i, i -- 1, n (U S2i = $2), we obtain  a 
i=1  

system of Hammers t e in  integral equations with respect to values of the function u(P)  on each of these surfaces.  

After numerical  solution of it, the function u(P)  is de termined by relat ionship (5) uniquely (i.e., it does not depend  

on the value of the pa rame te r  h), since Eq. (5) was obtained af ter  an  equivalent t ransformat ion  of the boundary  

conditions of problem (2). The  phase- interface  surface is determined numerical ly from Eq. (3). 

We applied the auxil iary Green  function method to numerical  solution of an ax i symmet r ic  s ta t ionary  Stefan 

problem arising in mathemat ica l  modeling of the s teady-s ta te  t empera ture  regime in the ca thode - r ay  autocrucible  

melting [101. In this case the domain f2 -- {(r, z): 0 < z < a; 0 < z < /} is a cyl inder  of radius a and  height  l. A 

linear t empera ture  dependence  of the thermal  conductivity of the solid phase  was considered.  Numer ica l  solution 

of the sys tem of Hammers t e in  integral equations was carr ied out using a projection-grid method [7 ]. T h e  resul ts  

obtained were independent  of the value of the auxil iary pa ramete r  h. 

Let us consider the application of the auxil iary Green function method to solution of one-d imens iona l  

t ime-dependent  Stefan problems,  again restricting considerat ions to the case of two phases,  a l though the method 

is applicable to an a rb i t ra ry  num ber  of phases. We will consider  only boundary  conditions that  require construct ion 

of an auxil iary Green  function, thereby including cases of both nonl inear  boundary  condit ions and  l inear  bounda ry  

conditions of the second and third kind. Stefan problems with boundary  conditions of the first kind (when a 

temperature  variation law is specified on a portion of the boundary)  are  reduced to a sys tem of integral  equations 

with the use of an ord inary  Green  function. 

First we consider problems with an internal phase front x = z(t)  assuming for defini teness  that  J:(t) > 0: 

L k T =  - w ( x , t , T )  + p z ( t )  x k6(k  ) ( x -  z ( t ) ) ,  0 <  x <  R ,  t > 0 ;  k = 0 ;  1 ;2  ; 

T ( x , O )  = T O ( x ) ;  T O(zO) = T . ;  T ( z ( t ) ,  t) = T . ;  z (O)  = Zo, 0 < z 0 < R ;  

,7t (T)  T x =  - e k qO (t, T) , x = O; 2 (T)  T x =  qR (t, T) , x = R . (6) 

Here  the values k -- 0, 1, 2 correspond to cases of plane, cylindrical,  and  spherical s y m m e t r y  of the t empera tu re  

field T(x ,  t), respectively, e 0 = l, e I = e 2 -- 0, and  LkT  = x - k O ( 2 ( T ) x k T x ) / O x  - 7 ( T ) T  t. The  specified functions 

;tiT), ),(T), and  w(x,  t, T) can be discontinuous upon crossing the phase  interface. 

By applying the Kirchhoff t ransform u(T) to the function T(x ,  t) and to its values at t = 0 and  x = z(t): 

u ( T ° ( x ) )  = uo(x)  and u ( T . )  -- u. ,  we obtain a Stefan problem for evaluation of the functions u(x ,  t) and  z(t),  in a 

form convenient for subsequent  solution: 

A~u  = x (u)  u t . -  W ( x ,  t, u )  + p~ (t) x k 6(~) ( x  - z ( t ) )  , O < x < le  , t > O', 

u ( x , O ) = u o ( x ) ;  u o ( z o ) = u . ;  u (z (t), t) = u, ; z ( O ) = ~ o ;  

u x = - ~ k Q 0 ( t , u ) ,  x = 0 ;  u x = Q R ( t , u ) ,  x = R .  (7) 

Here x (u )  = ) p ( T ( u ) ) d T ( u ) / d u ,  W(x ,  t, u) = w(x,  t, T(u)) ,  Qo(t, u) = q0(x, t, T(u)) ,  QR(t,  u) = qR(x,  t, T ( u ) ) .  

To derive an approximate  solution of problem (7), we make use of the method of lines [ 11 ]. By introducing 

the notation tn = nz, Un(X) = u(x ,  tn), z n = Z(tn), Wn(x ,  Un) = W(x ,  tn, Un), Qon(U n) = Qo(tn, Un), QRn(Un) = QR(tn,  
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Un) we obtain the following nonlinear boundary-value problem for evaluation of the function Un(X) and the constant  

Zn on the current time layer t = tn: 

A~u,, = x (u,,) (u,, - u , , _ l ) / ( o r )  - w, ,  (x ,  u,,) + p x  ~ a(k ) (x  - z,,) (z,, - z , , _ l ) / ( o z  ) - 

- (1 -- o')(AkUn_ 1 + Wn_ 1 (x, U n _ l ) ) / o ,  0 < x < R ;  

Unx = - ekQon (Un) , x = O; Unx = QRn (Un) , x = R ;  u n (zn) = u . ,  n = 1, 2 . . . . .  (8) 

Let us show that boundary-value problem (8) approximates Stefan problem (7) for t = t n with the accuracy 

O(r) for a - -  1 and O(r  2) for a = 1/2. It is obvious that this statement holds for x ~ Zn [ l l  ]. Let us multiply the 

differential equation of problem (8) by x k and integrate over x from Z n - e  to z n + e (e > 0). Upon passing to the 

limit as e --'- O, we obtain the relationship 

U~x ( z .  + O) - u ~  ( z .  - O) = p ( z .  - z . _ l ) / ( ~  ) - 

- (1 - ~r) ( u n _ l ,  x (zn + 0 )  - u ,~_ l ,  x (z  n - 0 ) ) / a ,  

which is an approximation at t -- tn of the well-known Stefan condition Ux(Z(t) + O, t) - Ux(Z(t) - 0, t) = p~(t) 

with accuracy O(T) for a = 1 and O(~ 2) for a = 1/2. 

Inasmuch as the Green function of the linear boundary-value problem corresponding to Eq. (8) does not 

exist, then, representing the boundary condition at x = R in the form 

u ,~  (R)  + hu  n (R )  = OR,, (u,~ (R) )  + hu,,  ( R )  (0 < h < oo),  

we introduce an auxiliary Green function G(x,  y) as the solution of the following boundary-value problem: 

AkG k (x, y) = -- ~(k) (x  -- y) , 0 < x < R ;  Gkx (O, y) = O, Gkx (R,  y) + hG k (R ,  y) = 0 ,  

from which we find 

G O (x, y) = 11 + h (R - y) I / h ,  G I (x, y) = II + hR In ( R / y ) 1 / ( h R ) ,  

G 2 ( x , y )  = lhR 2 +  (1 - hR)  y ] / ( h R 2 y ) ,  x < _ y ;  G k ( y , x )  = G  k ( x , y ) ,  k = 0 ;  1 ;2  . 

It should be noted that to derive the auxiliary Green function, instead of t ransforming the boundary  

condition at x -- R, one can transform the boundary  condition at x = 0 or both boundary  conditions simultaneously.  

Our choice here was dictated only by the goal of maximum simplification of subsequent solution of the problem, 

since Unx(O) = 0 for k = 1, 2. 

By making use of the second Green formula for the operator A k as applied to the functions Un and  Gk, we 

obtain the following integral representation for the solution Un(X) of boundary-value problem (8): 

u n (x) = u n (R)  + QRn (Un ( R ) ) / h  + ekG k (x,  O) Qon (Un (0)) -- 

R k 
-- pz n (z n -- Zn_l)  G k (x,  Zn) / (oT ) -- f G k (x, y) Fk, n (y, u n (y)) y~dy,  

0 
O s x ~ R ,  (9) 

where 

F~.~ (y, u )  = x (u)  (u  - u , , _ ~ ) / ( o ~ )  - w , ,  (y, u)  - ( I  - o )  ( A k u . _  I + W,~_ l (y,  % _ 1 ) ) / a .  
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Relationship (9) is a Hammers te in- type  integral equation with respect to Un(X) that contains the unknown 

constants un(O) (for k = 0),  u n ( R ) ,  and zn. For their evalualion one should write three additional equations by 

selling x = 0, x = R, and x = zn,  respectively, in (9). We present only the equation derived for x = R: 

R k 
R k [ekQOn (u  n (0)) + QRn (Un ( R ) )  ] - p z  n (z  n - Z n _ l ) / ( o ' r  ) - f Fk, n (y,  u n (y) )  y kdy  = O.  

0 

Noteworthily,  it does not contain the auxil iary parameter  h and it expresses the well-known condition [8 ] of 

solvability of s ta t ionary problem (8) if it is regarded as the second boundary-value problem for a one-dimensional  

Poisson equation. 

A numerical solution of the system of nonlinear integral equations obtained can be conveniently sought 

using the pro jec t ion-gr id  zonal  method  [71, which makes it possible to reduce  the sys tem to a sys tem of  

( N + 2 + e k )  nonlinear  algebraic equations with respect to un(O) (at k = 0), u n ( R ) ,  zn,  and values of the function 

u n ( x )  averaged over the subintervals ( x  i_1,  xi)  of the segment [0, R ]: 

x i 

(x k+l ~+_11) Uni = ( k  + 1) f u n (x )  x k d x /  i - -  x , i = I, N . 
x i -  1 

In the averaging, one should take into account the dependence of the functions G k ( x ,  zn) and Fk, n ( x ,  u n ( x ) )  on the 

unknown value zn (Fk ,n (x ,  u n ( x ) )  is discontinuous when x passes through the zn value). Therefore ,  at first glance, 

it becomes necessary to construct a subdivision of the segment [0, R ] that would somehow be related to the sought 

value z n, which should require adjustment  of the grid in each time step, as is done in many numerical methods of 

solving the Stefan problem [3-51. However, this difficulty can be overcome using an efficient iterative method,  e.g., 

Newton's  method,  by applying it to the system of nonlinear algebraic equations as a whole. As a result, in each 

i tera t ion a sys tem of l inear  algebraic  equat ions  will be ob ta ined  whose coeff ic ients  depend  on  the known 

approximation of the solution in the previous iteration. Here a stable subdivision of the segment 10, R]  will be 

retained. The  solution of the system in the preceding time layer  is appropriate for use as an initial approximation 

for Newton's  method.  Then  convergence of the iterative process will be achieved by decreasing the step T. 

Now we dwell on distinctive features of solving one-dimensional  Stefan problems with a movable external  

boundary.  Here  cases are possible where the external boundary coincides with the phase front or simply moves but 

is not the phase interface. The  simplest example of problems of the first type is the single-phase Stefan problems 

(k = 0, 1, 2) 

L k T  = - w ( x ,  t, T ) ,  0 < x < z ( t ) ,  t > O;  

T ( x ,  0) = T 0 ( x ) ;  T 0(z0) = T . ;  T ( z ( t ) , t )  = T . ;  z (0 )  = z 0 ,  z 0 >_>_0; (~o) 

2(7" )  T x =  -- t k q  O (t ,  7"),  x = O ; 2 ( T . )  T x =  qz (t ,  T . )  -- p z  ( t )  , x =  z (t)  . 

Problems of the second type arise in mathematical simulation of processes of cryodestruct ion of biological tissues 

112, 131 ( k = 0 ,  1, 2): 

L k T  = - w (x ,  t, T)  - p z  (t)  x kc3(k ) ( x  - z ( t ) )  , x 0 < x <  X (t)  , t > O; 

= T o T ( x ,  0) T 0 ( x ) ;  (z (0) )  = T . ;  T 0 ( x ( 0 ) )  = T 1; T ( z ( t ) ,  t) = T . ;  (11) 

2 ( T )  T x =  - q o ( t ,  T ) ,  x = x O; T x = O ,  x = X ( t ) ;  T ( X ( t ) ,  t) = T I . 

The  method of the auxiliary Green function can be used to solve problems (I0) and (11). Then ,  in the 

case of the single-phase problem (I0) we arrive at the integral equation 
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TABLE 1. Comparison of Computed Values of z( t )  with Results Obtained by a Direct-Computat ion Method [1 ! and 

with the Exact Solution 

z( t )  

t method of 11 1, r = 0.5; r = 0.5; r = 0.25; 
exact value 

r =0.5;  df =0.13 d =0.1 ~ =0.05 ~ =0.1 

10 

20 

30 

40 

50 

1.469 

1.324 

1.158 

0.968 

0.724 

1.468 

1.324 

1.161 

0.970 

0.727 

1.469 

1.324 

1.162 

0.971 

0.726 

1.469 

1.325 

1.163 

0.975 

0.738 

1.470 

1.327 

1.166 

0.980 

0.748 

TABLE 2. Comparison of Computed Values of T ( x ,  t) for • = 0.5 and d = 0.1 with the Exact Solution 

T ( x ,  t) at different t 

x 10 30 50 

I II I II I II 

0 

0.2 

0.4 

0,6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

0.9986 

0.9801 

0.9245 

0.8319 

0.7022 

0.5355 

0.3317 

0.0909 

-0 .2841  

-0 .7625  

-1 .2974  

1.0000 

0.9815 

0.9259 

0.8333 

0.7037 

0.5370 

0.3333 

0.0926 

- 0 . 2 8 1 5  

-0 .7600  

-1 .2948  

0.9917 

0.9623 

0.8740 

0.7268 

0.5208 

0.2559 

-0 .1030  

-0 .6841 

-1 .3547  

-2 .1148  

-2 .9643  

1 . 0 0 0 0  

0.9706 

0.8824 

0.7353 

0.5294 

0.2647 

-0 .0894  

-0 .6 7 0 6  

-1 .3 4 1 2  

-2 .1012  

-2 .9 5 0 6  

0.9447 

0.8732 

0.6586 

0.3009 

- 0 . 3 0 4 5  

-1 .2851  

- 2 . 4 8 2 9  

- 3 . 8 9 7 9  

- 5 . 5 2 9 6  

- 7 . 3 7 7 8  

- 9 . 4 4 2 0  

un (x) = u. + Qz~ (u . ) /h  + E~G~. (x, O) Qo~ (un (0)) - 

Zt l 

- p (z  n -  Z n _ l ) / ( h o ' r  ) -  f Gkn (X, y) Fk, n (y, u n (y))  ) ' kay ,  0 < x <_ z n ,  
0 

and the integral relationship for the cryodestruct ion problem (11) is as follows: 

k 
un (x) = ul + G~,, (x, Xo) Q0,, (u,, (xo)) + pz .  (zn - zn_l) a~n (x, z n ) / ( ~ )  - 

Xt/ 

- f G k n ( X , y )  Fk, n ( y , u  n ( y ) ) y k d y ,  x 0 < x <-- X n .  
0 

1.0000 

0.9286 

0.7143 

0.3571 

-0 .2171  

- 1 . 1 9 4 3  

- 2 . 3 8 8 6  

- 3 . 8 0 0 0  

- 5 . 4 2 8 6  

- 7 . 2 7 4 3  

-9 .3371  

(12) 

(13) 
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Expressions for Green  functions Gkn(x ,  y) are easily obta ined from the above-presented  express ions  for G k ( x ,  y) 

by subst i tut ing z n and Xn ,  respectively, for R in them. Relat ionship (12) should be supplemented  with integral  

equations derived from it for x = 0 (for k = 0) and  x = zn, and relat ionship (13) should be supplemented  with three  

equations obtained for x = xo, x = zn, and x = Xn .  To solve the obta ined sys tems  of integral equations numerical ly  

using the zonal method,  one can construct a uniform grid by sett ing the value of its step ~. The  coordinate  of the 

last node of the grid in each time layer will coincide with the sought  value z n (or X n, respectively),  which will be 

found in the course of solving the sys tem of nonlinear algebraic equations under  considerat ion by an i terative 

method.  Here  the distance between the penult imate and last nodes of the grid will be less than or equal to the step 

5, and  the total number  of nodes (and therefore the number  of equations of the algebraic sys tem)  can increase  not 

only upon passing to the next t ime layer  but also upon passing to the next  i teration in the given t ime layer.  

The  performance  of the method for numerical  solution of t ime-dependen t  Stefan problems proposed in the 

present  paper  was tested by compar ing results of computat ions with the numerical  solution obta ined  in [1 1 using 

a d i r e c t - c o m p u t a t i o n  m e t h o d  a n d  with the  exac t  so lu t ion  z( t )  = a( to  - t) I/2, 0 < t < /0; T ( x ,  t) = B L 

- A L  x2 / ( t  0 -- t ) ,  0 <_ x <__ z(t);  T ( x ,  t) = B s - As  x2 / ( t  o - t ) ,  z ( t )  <_ x <_ R;  A s = (42L(B L -- T.)  + p a 2 ) / ( 4 / l s a 2 ) ;  

AL = (BL -- T , ) / a 2 ;  Bs = T ,  + a2As of a problem with cylindrical s y m m e t r y  taken from [1 ], which we wrote in the 

form (6) (for k = 1, ~(t) < 0). 

Calculations were carr ied out for to = 64, T,  -- 0, BL = l,  a -- 0.2, p = 1, 2s -- 0.5, 2L = 0.75, Ys = 2, YL = 

1.25, R -- 2, a -- 1, the t ime-s tep  values r -- 0.5 and  r -- 0.25, and  the spat ia l -s tep values 3 -- 0.1 (N = 20) and  5 = 

0.05 (N = 40). The  results do not depend on the value of the auxi l iary pa rame te r  h (h ~ 0). 

Tables  1 and  2 present  results of computat ions of values of z ( t )  and T ( x ,  t) obtained af ter  three  i terat ions 

of Newton ' s  method (Samarski i  and Moiseenko [I ] also present  results  obta ined af ter  three i terat ions) .  The  

iteration process converges rapidly:  a f te r  three i terations an  accuracy of 0.001 is reached (as eva lua ted  from 

solutions of the sys tem of algebraic equations for the preceding and  following i terat ions).  A decrease  in the t ime 

step yields bet ter  results than a similar  decrease in the step in the spatial  variable. 

Thus ,  the numerical-analyt ical  method proposed in the present  work makes  it possible to find approx ima te  

solutions of mult idimensional  s ta t ionary and one-dimensional  t ime-dependen t  Stefan problems.  Application of this 

method to mult idimensional  t ime-dependent  problems requires separa te  considerat ion.  In the mul t id imensional  

case, the class of problems that can be treated by the method is de te rmined  by the possibility of deriving the Green  

function for the specific shapes  of the regions and the bounding surfaces.  The  method proposed is character ized 

by logical simplicity and  is as good in efficiency as the di rect -computat ion scheme [1 ]. 

N O T A T I O N  

T, temperature ;  x, spatial  coordinate; t, time; T.,  phase- t rans i t ion  tempera ture ;  T°(x) ,  initial t empera tu re  

distribution; ~-s and  ,~L, thermal  conductivity of the solid and  liquid phases,  respectively; ~, = cp; c,  specific heat;  

p ,  density;  w, distribution of intrinsic heat sources; z ( t ) ,  coordinate  of the phase transit ion; ~(t) = d z / d t ;  p = 

/-#L( T, ) ;  L, latent heat  of the phase transition; PL, densi ty of the liquid phase;  qo, qR, qz, heat  f luxes on the 

boundaries  x = 0, x = R, x = z(t),  respectively; 5 ( k ) ( x ) ,  Dirac 's  del ta-funct ion with the weight xk; u (T) ,  Kirchhoff  

t ransform applied to T; u,  = u (T . ) ;  Au = div(grad u), Laplace operator ;  A k u  = x - k O ( X k U x ) / O x ,  Laplace opera tor  

in the one-dimensional  case; T x = OT/Ox;  T t = OT/Ot;  Unx = Oun/Ox;  TI,  normal  t empera ture  of biotissue; Ul = 

U(Tl); x0, biotissue surface coordinate;  X(t) ,  cryoaction isotherm coordinate.  
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