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NUMERICAL SOLUTION OF STEFAN PROBLEMS BY
THE METHOD OF GREEN FUNCTIONS

Yu. V. Zhernovyi and M. T. Saichuk UDC 536.25:517.95

A method for reducing a multidimensional Stefan problem to a system of Hammerstein integral equations
is proposed. Application of the proposed method to numerical solution of one-dimensional nonstationary
Stefan problems formulated for the cases of an internal phase front, coincidence of the phase front with the
external boundary, and a movable external boundary is considered. The efficiency of the method is tested
on an exactly solvable Stefan problem.

It is well known that the majority of numerical methods of solving heat-conduction equations with a phase
transition (Stefan problems) can be divided into two groups: direct-computation schemes [1, 2] and schemes based
on explicit isolation of the front [3-6]. Efficient difference algorithms for direct computation are especially widely
applied to multidimensional problems. However, the accuracy of computing both the temperature and the position
of the phase interface depend strongly on the smoothing parameter, whose evaluation is rather complicated. In
implementing difference schemes based on explicit isolation of the front, considerable difficulties arise due to their
complex character and insufficient efficiency resulting from the need to adjust the grid in each time step. At the
same time, the possibilities of application of analytical methods at the initial stage of the investigation of problems
of this type have by no means been exhausted, in particular, use of the method of Green functions (here, the Green
function of the corresponding linear problem for the Laplace operator is meant) to reduce Stefan problems to integral
equations. The advantage of this approach as compared to finite-difference methods consists in that, first, no
approximation of the sought solution over spatial variables is necessary and, second, more efficient projection-grid
methods {7 can be used to solve the integral equations obtained. The efficiency of computations can also be
improved by using a stable computational grid that does not need to be adjusted in each time step.

In what follows, we consider a general formulation of the Stefan problem with account for the temperature
dependence of the coefficients of the heat-conduction equation (intrinsic nonlinearity) under nonlinear boundary
conditions (extrinsic nonlinearity). Application of the Kirchhoff transform linearizes the elliptic part of the
nonlinear heat-conduction equation. This, however, even in the simplest case of linear boundary conditions of the
third kind (describing heat transfer obeying Newton’s law), transforms them into nonlinear ones. Subsequent use
of the method of Green functions (8, 9] becomes impossible (excluding the case of boundary conditions of the first
kind), since the corresponding Green function cannot exist as a Green function for the second internal boundary-
value problem for the Laplace operator {8}. We propose a method for reducing the Kirchhoff-transformed Stefan
problem to integral equations (in the case of a nonstationary problem the method of lines is first applied).

To explain the essence of the method proposed, let us consider a multidimensional stationary Stefan prob-
lem. The method is applicable to an arbitrary number of phases; however, to simplify considerations, we restrict
ourselves to the two-phase problem. Let the body being heated occupy a domain 2 bounded by a closed piecewise-
smooth surface S. The phase-transition surface I', whose position is unknown, divides the domain €2 into the two
subdomains Qg = {P € Q: T(P) < T,} and Qp = {P € Q: T(P) > T,} occupied by the solid and liquid phases of
the substance, respectively. In each of the domains Qg and Q; the temperature 7(P) at the point P satisfics the
stationary heat conduction equation:

div A (T (P))grad T(P)) =0, PEQ, divl (T(P))grad T (P)) =0, PEQ,
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where A(T) and 4| (T) arc given continuously differentiable functions. A nonlincar boundary condition determined
by the regularitics of the heat transfer is specified on the surface S:

9T (P) _ _[A(my, T<T,,
A(T(P)) roaniie g(P, T (P, PES, A(T) = A (T)., T=T.,
where 9T/ dn is the derivative along the external normal to S. On the sought phasc interface T, in addition to the
fact that the temperature 7(P) cquals the temperaturc of the phésc transition T(P) = T,, P € T, the stationary
Stefan condition is satisfied:

aT (P oT (P
ey o ey TR M
T lreq - lpreg
P~ P-T
By applying the Kirchhoff transform
T(P)
u(P)y=u(T)= [ A(T)dT, Ty < min T (P)
To PEQ

(the inverse transform exists, for example, when the dependences A5(7T) and A (T) are linear) and taking into
account the condition of equality of heat fluxes (1), owing to which the function «(P) is continuously differentiable
even in passing through the surface I', we reduce the original problem to a nonlinear boundary-value problem for
the Laplace equation:

Au(P)=0,PGQ,QEé—ElQ=f(P,u(P)),P€S (2)
(here f(P, u(P)) = g(P, T(u(P)))) and an additional condition for determination of the surface I':
u(Py=u,, PeT. 3)

If one tries to reduce problem (2) 1o an integral equation using the method of Green functions, the following
boundary-value problem is obtained for determination of the Green function G(P, Q):

A6, Q=8 0, pea, XL o pes
(here 8(P, Q) is Dirac’s d-function with a singularity at the point Q € ), which has no solution [8 ].
However, the problem arising can be solved by constructing a Green function that we will refer to as

auxiliary. Let § = §{US,, where S; is a smooth surface and S; is a smooth or piecewise smooth surface. Let us
write the boundary condition of problem (2) in the form

6uan§1’)+hu([’)=f(P,u(P))+hu(P), Pes,, ‘%f.lfl=f(p,u(,>))’ res,.

where k is an arbitrary positive number (0 < & < «). Now we can introduce an auxiliary Green function as the
solution of the following boundary-value problem:

¢ G (P
5GP =-3(PQ), rea, XA 450, pes, Lo, res,. )
This function exists and is unique {81, and the possibility of determining it in practice depends on the shape of

the surface S. It should be noted that the boundary condition of the third kind with the auxiliary parameter A
introduced can be considered on the entire surface S, not just on its smooth portion S;.
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If the Green function is found from (4), then with its help, by using the second Green formula for the
Laplace operator applied to the functions « and G, one can reduce boundary-value problem (2) to the integral
relationship

u(P) =§fG(1’, Q) F(Q, u(Q)) + hu (Q)]dSQ+fG(P1 Qf(Q u(Q)dSy, PEQ. ()
1 $2

[ n
By considering this relationship on each of the smooth surfaces S; and Sy, i = 1, n (U Sy; = §7), we obtain a
i=1

system of Hammerstein integral equations with respect to values of the function «(P) on each of these surfaces.
After numerical solution of it, the function u(P) is determined by relationship (5) uniquely (i.e., it does not depend
on the value of the parameter ), since Eq. (5) was obtained after an equivalent transformation of the boundary
conditions of problem (2). The phase-interface surface is determined numerically from Eq. (3).

We applied the auxiliary Green function method to numerical solution of an axisymmetric stationary Stefan
problem arising in mathematical modeling of the steady-state temperature regime in the cathode-ray autocrucible
melting [10]. In this case the domain Q = {(r, 2): 0 < z < @; 0 < z < {} is a cylinder of radius @ and height /. A
linear temperature dependence of the thermal conductivity of the solid phase was considered. Numerical solution
of the system of Hammerstein integral equations was carried out using a projection-grid method [7]. The results
obtained were independent of the value of the auxiliary parameter A.

Let us consider the application of the auxiliary Green function method to solution of one-dimensional
time-dependent Stefan problems, again restricting considerations to the case of two phases, although the method
is applicable to an arbitrary number of phases. We will consider only boundary conditions that require construction
of an auxiliary Green function, thereby including cases of both nonlinear boundary conditions and linear boundary
conditions of the second and third kind. Stefan problems with boundary conditions of the first kind (when a
temperature variation law is specified on a portion of the boundary) are reduced to a system of integral equations
with the use of an ordinary Green function.

First we consider problems with an internal phase front x = z(#) assuming for definiteness that z(z) > 0:

LkT=——w(x,t,T)+pz(t)xk6(k)(x—z(t)), O<x<R, t>0; £k=0;1;2 ;

T 0) =T (); TO()=T.; T )=T.; z0) =z, 0<z5<R;
AN To=—¢€q0(t,T), x=0; A(T)T,=qg(t,T), x=R. (6)

Here the values £ = 0, 1, 2 correspond to cases of plane, cylindrical, and spherical symmetry of the temperature
field T(x, O, respectively, eg = 1, €] =€ =0, and LT = x”ka(ll(T)kax)/ax — y(1)Ty. The specified functions
A(T), y(T), and w(x, t, T) can be discontinuous upon crossing the phase interface.

By applying the Kirchhoff transform u(7) to the function T(x, t) and to its values at t = 0 and x = z(?):
u(Tn(x)) = ug(x) and u(T,) = u., we obtain a Stefan problem for evaluation of the functions u(x, 1) and z(?), in a
form convenient for subsequent solution:

A =K () y— W (x, 1, 1) + pz () X 8y (x — 2()), 0< x<R, 1>0;
u(x,0) =ug(x); ug(zg) =u,; u(z®, ) =u,; z(0) = zy;
uy=—Qgtuy, x=0; u, =Qp(t,u)y, x=R. Q)

Here x(u) = y(TD)YdT (W) /du, Wix, {, ©) = wix, t, T(W), Qut, w) = golx, t, Tw)), Qplt, u) = gplx, t, Tw)).
To derive an approximate solution of problem (7), we make use of the method of lines [t1]. By introducing
the notation £, = nt, up(x) = ulx, 4y, zn = (), Wylx, uy) = WX, 1y, up), Qonluy) = Oolty, un), Qruluy) = Qrl iy,
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uy,) we obtain the following nonlinear boundary-value problem for evaluation of the function u,(x) and the constant
zy on the current time layer 1 = ¢

k
Apuy = & (u,) (uy — u,_1)/(01) — W, (x, u,) + px é(k) (x =z, 2y — 24-1)/(07) —
~(l -0 Ay + Wy (%, u,_y))/o, 0<x<R;
Une = = 6Q0n (Up) » X =03 up, = Qpp(up), x=R; uy(z) =u,, n=1,2, ... ®)

Let us show that boundary-value problem (8) approximates Stefan problem (7) for ¢ = ¢, with the accuracy
O@) for o =1 and OGH for o = 1/2. It is obvious that this statement holds for x # z, [11]. Let us multiply the
differential equation of problem (8) by x* and integrate over x from z,—¢ to z, + ¢ (¢ > 0). Upon passing to the
limit as ¢ -» 0, we obtain the relationship

Uy (2, +0) —u, (2, = 0) = p (2, — 2,_,)/(o7) —
—(1=0) (U x(zp+0) = uy_y (2, — 0))/0,

which is an approximation at ¢ = ¢, of the well-known Stefan condition u,(z(t) + 0, ) — u,(z(t) — 0, O = pz(®)
with accuracy O(r) for o =1 and 0G? foro=1/2.

Inasmuch as the Green function of the linear boundary-value problem corresponding to Eq. (8) does not
exist, then, representing the boundary condition at x = R in the form

Upy (R) + hu, (R) = Qg, (4, (R)) + hu, (R) (0 < h < »),
we introduce an auxiliary Green function G(x, y) as the solution of the following boundary-value problem:
AGr(x )= =3y (x =¥, 0<x<R; G (0,y) =0, Gy (R, y) + hG (R, y) =0,
from which we find

Gy(x,y)= 1+ h(R~yVh, G (x,y) = [l + hRIn (R/y)1/(hR),

Gy (%, y) = [ARY + (1 = hRY yI/(hR%Y), x <5 G, (3 %) =G (x,9), k=0;1;2 .

It should be noted that to derive the auxiliary Green function, instead of transforming the boundary
condition at x = R, one can transform the boundary condition at x = 0 or both boundary conditions simultaneously.
Our choice here was dictated only by the goal of maximum simplification of subsequent solution of the problem,
since up (0 =0 for k=1, 2.

By making use of the second Green formula for the operator Ay as applied to the functions u, and Gy, we
obtain the following integral representation for the solution u,(x) of boundary-value problem (8):

u, (x) = u, (R) + Qg, (u, (R))/h + ¢,G; (x, 0) Qy, (4, (0)) —

R
— pzh (2 — 2,_1) Gy (x, 2,)/(0T) = { Ge (% Y) Frn Oty 0) Yy, 0<x =R, )

where

Fk,n v,u) =« () (u—u, )/ (ot) = W, (y,u) — (1 - 0) (Akun_1 + W, (0, )/ o.
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Relationship (9) is a Hammersicin-type integral equation with respect to u,(x) that contains the unknown
constants u#,(0) (for k = 0), u,(R), and z,. For their evaluation one should write three additional equations by
setting x = 0, x = R, and x = z,, respectively, in (9). We present only the equation derived for x = R:

R
R* [64Q0n (10 (0)) + Qgp (un (R)) 1 = Pz (2 — 2g-1)/(07) — { Fin Oty 3)) ¥'dy=0.

Noteworthily, it does not contain the auxiliary parameter 4 and it expresses the well-known condition [8] of
solvability of stationary problem (8) if it is regarded as the second boundary-value problem for a one-dimensional
Poisson equation.

A numerical solution of the system of nonlinear integral equations obtained can be conveniently sought
using the projection-grid zonal method {71, which makes it possible to reduce the system to a system of
(N+2+¢;) nonlinear algebraic equations with respect to u,(0) (at k = 0), u,(R), z,, and values of the function
uy(x) averaged over the subintervals (x;_;, x;) of the segment [0, R}

Xj
uy =k + 1) [ w0 2des (-, i=TN .

Xi—1t

In the averaging, one should take into account the dependence of the functions Gy (x, z,) and Fy ,(x, u,(x)) on the
unknown value z, (Fg p(x, u,(x)) is discontinuous when x passes through the z, value). Therefore, at first glance,
it becomes necessary to construct a subdivision of the segment {0, R] that would somehow be related to the sought
value z,, which should require adjustment of the grid in each time step, as is done in many numerical methods of
solving the Stefan problem [3-5 1. However, this difficulty can be overcome using an efficient iterative method, e.g.,
Newton’s method, by applying it to the system of nonlinear algebraic equations as a whole. As a result, in each
iteration a system of linear algebraic equations will be obtained whose coefficients depend on the known
approximation of the solution in the previous iteration. Here a stable subdivision of the segment [0, R] will be
retained. The solution of the system in the preceding time layer is appropriate for use as an initial approximation
for Newton’s method. Then convergence of the iterative process will be achieved by decreasing the step .

Now we dwell on distinctive features of solving one-dimensional Stefan problems with a movable external
boundary. Here cases are possible where the external boundary coincides with the phase front or simply moves but
is not the phase interface. The simplest example of problems of the first type is the single-phase Stefan problems
k=0,1,2)

LiT=-w(xtT), 0<x<z(), t>0;
T(x, 0 =T (x); T () =T.; T =T.; z(0) =25, 292 0; (10)
AMT,=—q5(t, T, x=0; A(T)T,=q,(t,T,)—pz(t), x=2z().

Problems of the second type arise in mathematical simulation of processes of cryodestruction of biological tissues
f12, 13} k=0, 1, 2):

LkT=—w(x,t,T)—pé(l)xké(k)(x—z(t)), Xp<x<X(), t>0;
T, 0=T"(x); T ) =T,; T'(X©)=T,; T 0)=T,; (11)
AT T, =—qgo(t.T), x=x53 T, =0, x=X(); TX@®),)=T,.

The method of the auxiliary Green function can be used to solve problems (10) and (11). Then, in the
case of the single-phase problem (10) we arrive at the integral equation
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TABLE 1. Comparison of Computed Values of z(7) with Results Obtained by a Direct-Computation Method [1 ] and
with the Exact Solution

z(0)

! method of [1 ], 1=0.5; 7=0.5; 1=0.25;
1=0.5;6=0.13 5=0.1 8=0.05 5=0.1 exact value
10 1.469 1.468 1.469 1.469 1.470
20 1.324 1.324 1.324 1.325 1.327
30 1.158 1.161 1.162 1.163 1.166
40 0.968 0.970 0.971 0.975 0.980
50 0.724 0.727 0.726 0.738 0.748
TABLE 2. Comparison of Computed Values of T(x, #) for t =0.5 and 6 = 0.1 with the Exact Solution
T(x, ©) at different ¢
x 10 30 50
I I I I1 I I1
0 0.9986 1.0000 0.9917 1.0000 0.9447 1.0000
0.2 0.9801 0.9815 0.9623 0.9706 0.8732 0.9286
0.4 0.9245 0.9259 0.8740 0.8824 0.6586 0.7143
0.6 0.8319 0.8333 0.7268 0.7353 0.3009 0.3571
0.8 0.7022 0.7037 0.5208 0.5294 —0.3045 -0.2171
1.0 0.5355 0.5370 0.2559 0.2647 —1.2851 ~1.1943
[.2 0.3317 0.3333 -0.1030 —0.0894 —-2.4829 —2.3886
1.4 0.0909 0.0926 —0.6841 —0.6706 —3.8979 —3.8000
1.6 —0.2841 —-0.2815 -1.3547 -1.3412 -5.5296 —5.4286
1.8 -0.7625 —-0.7600 —2.1148 -2.1012 -7.3778 —17.2743
2.0 -1.2974 —1.2948 —2.9643 —2.9506 —9.4420 -9.3371

and the integral relationship for the cryodestruction problem (11) is as follows:
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Uy (X) = uy + Q,, (u)/ h + 6,Gy, (%, 0) Qg (u, (0)) —

Zn

k
=P (2y = 251)/ (hoT) = [ G (5, 3) Fiy (0 0, (3)) Y dy, 0 < x5 2.,
0

X

n

k
-kan (x, y) Fin hu, (M) ydy, xgsx=X,.
0

Uy (X) = 4 + Gy (%2 %0) Qg (U (X0)) + P2e (2 = 2p_1) G (Xs 2/ (0T) =

(12)

(13)



Expressions for Green functions Gy,(x, y) are easily obtained from the above-presented expressions for Gy (x, ¥)
by substituting z, and X,, respectively, for R in them. Relationship (12) should be supplemented with integral
cequations derived from it for x =0 (for £ =0) and x = z,;, and relationship (13) should be supplemented with three
equations obtained for x = xg, x = z,;, and x = X,,. To solve the obtained systems of integral equations numerically
using the zonal method, one can construct a uniform grid by setting the value of its step d. The coordinate of the
last node of the grid in each time layer will coincide with the sought value z, (or X, respectively), which will be
found in the course of solving the system of nonlinear algebraic equations under consideration by an iterative
method. Here the distance between the penultimate and last nodes of the grid will be less than or equal to the step
d, and the total number of nodes (and therefore the number of equations of the algebraic system) can increase not
only upon passing to the next time layer but also upon passing to the next iteration in the given time layer.

The performance of the method for numerical solution of time-dependent Stefan problems proposed in the
present paper was tested by comparing results of computations with the numerical solution obtained in {1 ] using
a direct-computation method and with the exact solution z(z) = a(ty — 1)1/2, O=<st<1ty T, ) = B
— AL /Uy = 1,0 < x<z2(0; T, O = By — Ax* /(g — D), 2() < x < R; Ag = (4 (B, — T.) + pa*)/ (4Asah);
AL = (B ~ T‘)/az; Bs=T, + ¢12AS of a problem with cylindrical symmetry taken from [1 ], which we wrote in the
form (6) (for k=1, z(t) < 0).

Calculations were carried out for tg =64, 7. =0, BL=1,a=02,p=1,2,=05, =075, 9= 2, yp =
1.25, R =2, o =1, the time-step values t = 0.5 and v = 0.25, and the spatial-step values 6 =0.1 (¥ =20) and § =
0.05 (N = 40). The resilts do not depend on the value of the auxiliary parameter i (A %= 0).

Tables 1 and 2 present results of computations of values of z(¢) and T(x, ? obtained after three iterations
of Newton’s method (Samarskii and Moiseenko [!] also present results obtained after three iterations). The
iteration process converges rapidly: after three iterations an accuracy of 0.001 is reached (as evaluated from
solutions of the system of algebraic equations for the preceding and following iterations). A decrease in the time
step yields better results than a similar decrease in the step in the spatial variable.

Thus, the numerical-analytical method proposed in the present work makes it possible to find approximate
solutions of multidimensional stationary and one-dimensional time-dependent Stefan problems. Application of this
method to multidimensional time-dependent problems requires separate consideration. In the multidimensional
case, the class of problems that can be treated by the method is determined by the possibility of deriving the Green
function for the specific shapes of the regions and the bounding surfaces. The method proposed is characterized
by logica: simplicity and is as good in efficiency as the direct-computation scheme [1].

NOTATION

T, temperature; x, spatial coordinate; ¢, time; T,, phase-transition temperature; To(x), initial temperature
distribution; A5 and A, thermal conductivity of the solid and liquid phases, respectively; y = cp; ¢, specific heat;
p, density; w, distribution of intrinsic heat sources; z(¢), coordinate of the phase transition; z(f) = dz/dt; p =
Lpy( T,); L, latent heat of the phase transition; py, density of the liquid phase; gp, gr, ¢, heat fluxes on the
boundaries x =0, x = R, x = z(1), respectively; d.)(x), Dirac’s delta-function with the weight xk; u(T), Kirchhoff
transform applied to T; w. = u(T.); Au = div(grad u), Laplace operator; Agu = x_ka(xkux)/ax, Laplace operator
in the one-dimensional case; T, = 0T/ dx; Ty = dT/3t; upx = du,/dx; Ty, normal temperature of biotissue; u; =
u(T)); xp, biotissue surface coordinate; X (1), cryoaction isotherm coordinate.
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